viernes, 24 de junio de 2016

primer periodo fisica

1(p)   Hidrostatica 

a hidrostática o estática de fluidos es la parte de la física que estudia los fluidos en reposo.
Se denominan fluidos los cuerpos que no tienen forma propia, sino que se adaptan a la forma de la vasija que los contiene, son líquidos o gases.
Los líquidos tiene forma variable, volumen constante, son poco compresibles, y ejercen, a causa de su peso, presiones sobre las paredes del recipiente que los contienen.
Se deforman con facilidad y su superficie libre tiene forma definida. Los gases no tienen volumen constante y son fácilmente compresibles.

PRESIÓN Y DENSIDAD 

DENSIDAD

En física y química, la densidad (del latín densĭtas, -ātis) es una magnitud escalar referida a la cantidad de masa en un determinado volumen de una sustancia. Usualmente se simboliza mediante la letra rho ρ del alfabeto griego. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.
Si un cuerpo no tiene una distribución uniforme de la masa en todos sus puntos la densidad alrededor de un punto puede diferir de la densidad media. Si se considera una sucesión de pequeños volúmenes decrecientes  (convergiendo hacia un volumen muy pequeño) centrados alrededor de un punto, siendo  la masa contenida en cada uno de los volúmenes anteriores, la densidad en el punto común a todos estos volúmenes es:
La unidad es kg/m³ en el SI.
Como ejemplo, un objeto de plomo es más denso que otro de corcho, con independencia del tamaño y masa
PRESIÓN
La materia ordinaria se presenta en alguno de los tres estados siguientes: sólido, líquido o gaseoso. Existe un cuarto estado de la materia denominado plasma que es esencialmente un gas ionizado con igual número de cargas positivas que negativas.
Un sólido cristalino es aquél que tiene una estructura periódica y ordenada, como consecuencia, tiene una forma que no cambia, salvo por la acción de fuerzas externas. Cuando se aumenta la temperatura, los sólidos se funden y cambian al estado líquido. Las moléculas ya no permanecen en posiciones fijas, aunque las interacciones entre ellas sigue siendo suficientemente grande para que el líquido pueda cambiar de forma sin cambiar apreciablemente de volumen, adaptándose al recipiente que lo contiene.
En el estado gaseoso, las moléculas están en continuo movimiento y la interacción entre ellas es muy débil. Las interacciones tienen lugar, cuando las moléculas chocan entre sí. Un gas se adapta al recipiente que lo contiene pero trata de ocupar todo el espacio disponible.
En este capítulo, se estudiarán los denominados fluidos ideales o perfectos, aquellos que se pueden desplazar sin que presenten resistencia alguna. Posteriormente, estudiaremos los fluidos reales, aquellos que presentan cierta resistencia al fluir. La dinámica de fluidos es muy compleja, sobre todo si se presentan los denominados vórtices o torbellinos.

PRESIÓN HIDROSTATICA 

  • La presión hidrostática es la parte de la presión debida al peso de un fluido en reposo. En un fluido en reposo la única presión existente es la presión hidrostática, en un fluido en movimiento además puede aparecer una presión hidrodinámica adicional relacionada con la velocidad del fluido. Es la presión que sufren los cuerpos sumergidos en un líquido o fluido por el simple y sencillo hecho de sumergirse dentro de este. Se define por la fórmula  donde  es la presión hidrostática,  es el peso específico y  profundidad bajo la superficie del fluido.

                                             


PRESIÓN ATMOSFERICA

La presión atmosférica es la fuerza por unidad de área que ejerce el aire sobre la superficie terrestre.
La presión atmosférica en un punto coincide numéricamente con el peso de una columna estática de aire de sección recta unitaria que se extiende desde ese punto hasta el límite superior de la atmósfera. Como la densidad del aire disminuye conforme aumenta la altura, no se puede calcular ese peso a menos que seamos capaces de expresar la variación de la densidad del aire en función de la altitud o de la presión, por lo que no resulta fácil hacer un cálculo exacto de la presión atmosférica sobre un lugar de la superficie terrestre. Además tanto la temperatura como la presión del aire están variando continuamente, en una escala temporal como espacial, dificultando el cálculo. Se puede obtener una medida de la presión atmosférica en un lugar determinado pero de ella no se pueden sacar muchas conclusiones; sin embargo, la variación de dicha presión a lo largo del tiempo permite obtener una información útil que, unida a otros datos meteorológicos (temperatura atmosférica, humedad y vientos), puede dar una imagen bastante acertada del tiempo atmosférico en dicho lugar e incluso un pronóstico a corto plazo del mismo.
  
   

PRINCIPIO DE PASCAL 
En física, el principio de Pascal o ley de Pascal, es una ley enunciada por el físico-matemático francés Blaise Pascal (1623-1662) que se resume en la frase: la presión ejercida sobre un fluido incompresible y en equilibrio dentro de un recipiente de paredes indeformables se transmite con igual intensidad en todas las direcciones y en todos los puntos del fluido.
En pocas palabras, se podría resumir aún más, afirmando que toda presión ejercida hacia un fluido, se esparcirá sobre toda la sustancia de manera uniforme. El principio de Pascal puede comprobarse utilizando una esfera hueca, perforada en diferentes lugares y provista de un émbolo. Al llenar la esfera con agua y ejercer presión sobre ella mediante el émbolo, se observa que el agua sale por todos los agujeros con la misma velocidad y por lo tanto con la misma presión.
También podemos observar aplicaciones del principio de Pascal en las prensas hidráulicas, en los elevadores hidráulicos, en los frenos hidráulicos y en los puentes hidráulicos.

PRINCIPIO DE ARQUIMEDES 

El principio de Arquímedes es un principio físico que afirma que: «Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual al peso del volumen del fluido que desaloja». Esta fuerzaMrecibe el nombre de empuje hidrostático o de Arquímedes, y se mide en Newtons (en el SI). El principio de Arquímedes se formula así:
o bien:
donde E es el empuje, ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g laaceleración de la gravedad y m la masa. De este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normalesMy descrito de modo simplificado ) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del cuerpo; este punto recibe el nombre de centro de carena.

FLUIDOS EN MOVIMIENTO 

LOS FLUIDOS EN MOVIMIENTO SON LOS LÍQUIDOS Y GASES QUE SE DESPLAZAN.
Tal como su nombre lo indica son fluidos que se mueven, como el aire dentro de un tubo cuando soplas y cuando se trata de líquidos pueden estar quietos en un recipiente y de sus propiedades se ocupa la hidrostática o moverse por ejemplo por una cañería, caso estudiado por la hidrodinámica.
Ejemplos: El viento, la corriente de un río, cuando abres la canilla tendrás agua en movimiento. Cuando pones gaseosa en un, vaso desde la botella, cuando enciendes el ventilador tienes un un gas en movimiento, etc.



TERMODINÁMICA 

La termodinámica (del griego θερμo, termo, que significa «calor» , dínamis, que significa «fuerza») es la rama de la física que describe los estados de equilibrio a nivel macroscópico. El Diccionario de la lengua española de la Real Academia Española, por su parte, define a la termodinámica como la rama de la física encargada del estudio de la interacción entre el calor y otras manifestaciones de la energía. Constituye una teoría fenomenológica, a partir derazonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,o por medio de magnitudes no-extensivas derivadas de las anteriores como latemperaturapresión y el potencial químico; otras magnitudes, tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden tratarse por medio de la termodinámica



TEMPERATURA 

La temperatura es una magnitud referida a las nociones comunes de calor medible mediante un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.



DILATACIÓN TÉRMICA

De una forma general, cuando aumentamos la temperatura de un cuerpo (sólido o líquido), aumentamos la agitación de las partículas que forman ese cuerpo. Esto causa un alejamiento entre las partículas, resultando en un aumento en las dimensiones del cuerpo (dilatación térmica). Por otra parte, una disminución en la temperatura de un cuerpo, acarrea una reducción en sus dimensiones  (construcción térmica)



CALOR

Calor es la forma de energía que se transfiere entre dos sistemas (o un sistema y sus alrededores) debido a una diferencia de temperatura. El calor es energía en tránsito que se reconoce solo cuando se cruza la frontera de un sistema termodinámico. Una vez dentro del sistema, o en los alrededores, si la transferencia es de dentro hacia afuera, el calor transferido se vuelve parte de la energía interna del sistema o de los alrededores, según su caso. El término calor, por tanto, se debe de entender como transferencia de calor y solo ocurre cuando hay diferencia de temperatura y en dirección de mayor a menor. De ello se deduce que no hay transferencia de calor entre dos sistemas que se encuentran a la misma temperatura (están en equilibrio térmico).





TRANSFERENCIA DE CALOR

La transferencia de calor es el proceso de propagación del calor en distintos medios. La parte de la física que estudia estos procesos se llama a su vez Transferencia de calor o Transmisión de calor. La transferencia de calor se produce siempre que existe un gradiente térmico o cuando dos sistemas con diferentes temperaturas se ponen en contacto. El proceso persiste hasta alcanzar el equilibrio térmico, es decir, hasta que se igualan las temperaturas. Cuando existe una diferencia de temperatura entre dos objetos o regiones lo suficientemente próximas, la transferencia de calor no puede ser detenida, solo puede hacerse más lenta.



EQUIVALENTE MECÁNICO DEL CALOR 

el concepto de equivalente mecánico del calor hace referencia a que el movimiento y el calor son mutuamente intercambiables, y que en todos los casos, una determinada cantidad de trabajo podría generar la misma cantidad de calor siempre que el trabajo hecho se convirtiese totalmente en energía calorífica. El equivalente mecánico del calor fue un concepto que tuvo un papel importante en el desarrollo y aceptación del principio de laconservación de la energía y en el establecimiento de la ciencia de la termodinámica en el siglo XIX.




CALOR Y CAMBIOS DE ESTADO

En física y química se denomina cambio de estado a la evolución de la materia entre varios estados de agregación sin que ocurra un cambio en su composición. Los tres estados más estudiados y comunes en la Tierra son el sólido, ellíquido y el gaseoso; no obstante, el estado de agregación más común en el Universo es el plasma, material del que están compuestas las estrellas (si se descarta la materia oscura).

CAMBIOS DE ESTADO DE AGREGACIÓN DE LA MATERIA 


Son los procesos en los que un estado de la materia cambia a otro manteniendo una semejanza en su composición. A continuación se describen los diferentes cambios de estado o transformaciones de fase de la materia:
  • Fusión: Es el paso de un sólido al estado líquido por medio del calor; durante este proceso endotérmico (proceso que absorbe energía para llevarse a cabo este cambio) hay un punto en que la temperatura permanece constante. El "punto de fusión" es la temperatura a la cual el sólido se funde, por lo que su valor es particular para cada sustancia. Dichas moléculas se moverán en una forma independiente, transformándose en un líquido. Un ejemplo podría ser un hielo derritiéndose, pues pasa de estado sólido al líquido.
  • Solidificación: Es el paso de un líquido a sólido por medio del enfriamiento; el proceso es exotérmico. El "punto de solidificación" o de congelación es la temperatura a la cual el líquido se solidifica y permanece constante durante el cambio, y coincide con el punto de fusión si se realiza de forma lenta (reversible); su valor es también específico.
  • Vaporización y ebullición: Son los procesos físicos en los que un líquido pasa a estado gaseoso. Si se realiza cuando la temperatura de la totalidad del líquido iguala al punto de ebullición del líquido a esa presión continuar calentándose el líquido, éste absorbe el calor, pero sin aumentar la temperatura: el calor se emplea en la conversión del agua en estado líquido en agua en estado gaseoso, hasta que la totalidad de la masa pasa al estado gaseoso. En ese momento es posible aumentar la temperaturadel gas.
  • Condensación: Se denomina condensación al cambio de estado de la materia que se pasa de forma gaseosa a forma líquida. Es el proceso inverso a la vaporización. Si se produce un paso de estado gaseoso a estado sólido de manera directa, el proceso es llamado sublimación inversa. Si se produce un paso del estado líquido a sólido se denomina solidificación.
  • Sublimación: Es el proceso que consiste en el cambio de estado de la materia sólida al estado gaseoso sin pasar por el estado líquido. Al proceso inverso se le denomina Sublimación inversa; es decir, el paso directo del estado gaseoso al estado sólido. Un ejemplo clásico de sustancia capaz de sublimarse es el hielo seco.
  • Desionización: Es el cambio de un plasma a gas.
  • Ionización: Es el cambio de un gas a un plasma.





PRIMERA LEY DE LA TERMODINÁMICA 

La primera ley de la termodinámica establece que  la energía no se crea, ni se destruye, sino que se conserva. Entonces esta ley expresa que, cuando un sistema es sometido a un ciclo termodinámico, el calor cedido por el sistema será igual al trabajo recibido por el mismo, y viceversa.
Es decir Q = W, en que Q es el calor suministrado por el sistema al medio ambiente y W el trabajo realizado por el medio ambiente al sistema durante el ciclo.
Un ejemplo sencillo seria: Al remover con un taladro el agua contenida en un recipiente, le estamos aplicando trabajo, que es igual al calor que este emite al medio ambiente al calentarse. En este caso, el sistema puede ser el agua, el medio sería el taladro, el aire circundante y todo lo que está fuera del sistema que no sea agua (pues lo que está afuera recibirá calor del sistema).

SEGUNDA LEY DE LA TERMODINÁMICA 

Esta ley de la física expresa que "La cantidad de entropía (magnitud que mide la parte de la energía que no se puede utilizar para producir un trabajo) de cualquier sistema aislado termodinámicamente tiende a incrementarse con el tiempo". Más sencillamente, cuando una parte de un sistema cerrado interacciona con otra parte, la energía tiende a dividirse por igual, hasta que el sistema alcanza un equilibrio térmico.

La segunda ley de la termodinámica establece cuales procesos de la naturaleza  pueden ocurrir o no. De todos los procesos permitidos por la primera ley, solo ciertos tipos de conversión de energía pueden ocurrir. Los siguientes son algunosprocesos compatibles con la primera ley de la termodinámica, pero que se cumplen en un orden gobernado por la segunda ley:

1) Cuando dos objetos que están a diferente temperatura se ponen en contacto térmico entre sí, el calor fluye del objeto más cálido al más frío, pero nunca del más frío al más cálido.
2) La sal se disuelve espontáneamente en el agua, pero la extracción de la sal del agua requiere alguna influencia externa.

3) Cuando se deja caer una pelota de goma al piso, rebota hasta detenerse, pero el proceso inverso nunca ocurre.

Todos estos son ejemplos de procesos irreversibles, es decir procesosque ocurren naturalmente en una sola dirección. Ninguno de estos procesos ocurre en el orden temporal opuesto. Si lo hicieran, violarían la segunda ley dela termodinámica. La naturaleza unidireccional de los procesos termodinámicos establece una dirección del tiempo.


MOVIMIENTO ARMÓNICO SIMPLE 

El movimiento armónico simple (m.a.s.), también denominado movimiento vibratorio armónico simple(m.v.a.s.), es un movimiento periódico, y vibratorio en ausencia de fricción, producido por la acción de una fuerza recuperadora que es directamente proporcional a la posición, y que queda descrito en función deltiempo por una función senoidal (seno o coseno). Si la descripción de un movimiento requiriese más de una función armónica, en general sería un movimiento armónico, pero no un m.a.s.
En el caso de que la trayectoria sea rectilínea, la partícula que realiza un m.a.s. oscila alejándose y acercándose de un punto, situado en el centro de su trayectoria, de tal manera que su posición en función del tiempo con respecto a ese punto es una sinusoide. En este movimiento, la fuerza que actúa sobre la partícula es proporcional a su desplazamiento respecto a dicho punto y dirigida hacia éste.


FUERZA RECUPERADORA

Las fuerzas recuperadoras elásticas fueron estudiadas por primera vez, en 1678, por Robert Hooke, quien observó que, si el alargamiento de un resorte no es suficientemente grande para deformarlo de modo permanente, la fuerza elástica (recuperadora) es directamente proporcional al alargamiento.
El sistema como su nombre lo indica, es el conjunto conformado por un resorte helicoidal y un cuerpo con masa determinada, que interactúan y presentan un movimiento periódico. Se dice que a mayor masa el tiempo en el que el resorte se quedara en su posición de equilibrio es mayor.
Observando el movimiento del resorte, vemos que se desplaza entre dos puntos, desde la máxima compresión hasta la máxima elongación, pasando por un punto medio, de equilibrio. La distancia desde el punto medio a cualquiera de los extremos la llamamos AMPLITUD y la representamos por A.
La posición que ocupa la bola roja en cada momento con respecto al punto central la conocemos como ELONGACIÓN, x.
El tiempo en realizar una oscilación completa es el PERÍODO, representado por T y medido en segundos.
La FRECUENCIA es el número de oscilaciones por segundo que realiza y la representamos por v.



DESCRIPCIÓN 

Describir es explicar, de manera detallada y ordenada, como son las personas, animales, lugares y objetos. La descripción sirve sobre todo para ambientar la acción y crear una atmósfera que haga más creíbles los hechos que se narran. Muchas veces, las descripciones contribuyen a detener la acción y preparar el escenario de los hechos que siguen.

ENERGÍA 

Al mirar a nuestro alrededor se observa que las plantas crecen, los animales se trasladan y que las máquinas y herramientas realizan las más variadas tareas. Todas estas actividades tienen en común que precisan del concurso de la energía.
La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza.
La energía se manifiesta en los cambios físicos, por ejemplo, al elevar un objeto, transportarlo, deformarlo o calentarlo.
La energía está presente también en los cambios químicos, como al quemar un trozo de madera o en la descomposición de agua mediante la corriente eléctrica.








No hay comentarios:

Publicar un comentario